3D Pythagoras \& Trigonometry Question Paper

Course	EdexcellGCSE Maths
Section	4. Geometry \& Trigonometry
Topic	3D Pythagoras \& Trigonometry
Difficulty	Very Hard

Time allowed: 70

Score: /52
Percentage: /100

Question 1

$V A B C D$ is a solid pyramid.

$A B C D$ is a square of side 20 cm .
The angle between any sloping edge and the plane $A B C D$ is 55°
Calculate the surface area of the pyramid.
Give your answer correct to 2 significant figures.

Question 2

The diagram shows the prism $A B C D E F$ with cross section triangle $A B C$.

Angle $B E C=40^{\circ}$ and angle $A C B$ is obtuse.
$A C=6 \mathrm{~cm}$ and $C E=13 \mathrm{~cm}$

The area of triangle $A B C$ is $22 \mathrm{~cm}^{2}$

Calculate the length of $A B$.
Give your answer correct to one decimal place.

Question 3

The diagram shows a triangular prism.

The base, $A B C D$, of the prism is a square of side length 15 cm .
Angle $A B E$ and angle $C B E$ are right angles.
Angle $E A B=35^{\circ}$
M is the point on $D A$ such that

$$
D M: M A=2: 3
$$

Calculate the size of the angle between $E M$ and the base of the prism.
Give your answer correct to 1 decimal place.

Question 4

The diagram shows a solid prism $A B C D E F G H$.

Diagram NOT
accurately drawn

The trapezium $A B C D$, in which $A D$ is parallel to $B C$, is a cross section of the prism.
The base $A D E H$ of the prism is a horizontal plane.
$A D E H$ and $B C F G$ are rectangles.
The midpoint of $B C$ is vertically above the midpoint of $A D$ so that $B A=C D$.

$$
A D=37 \mathrm{~cm} \quad G F=28 \mathrm{~cm} \quad D E=24 \mathrm{~cm}
$$

The perpendicular distance between edges $A D$ and $B C$ is 20 cm .
Calculate the size of the angle between $A F$ and the plane $A D E H$.
Give your answer correct to one decimal place.

Question 5

The diagram shows the prism $A B C D E F G H J K$ with horizontal base $A E F G$

Diagram NOT accurately drawn

$A B C D E$ is a cross section of the prism where

$A B D E$ is a square

$B C D$ is an equilateral triangle
$E F=2 \times A E$
M is the midpoint of $G F$ so that $J M$ is vertical.
Angle $M A J=y^{\circ}$
Given that $\quad \tan y^{\circ}=T$
find the value of T, giving your answer in the form $\frac{\sqrt{p}+\sqrt{q}}{17}$ where p and q are integers.

Question 6

The diagram shows a solid pyramid $A B C D E$ with a horizontal base.

Diagram NOT
accurately drawn

The base, $B C D E$, of the pyramid is a square of side 10 cm .
The vertex A of the pyramid is vertically above the centre O of the base so that $A B=A C=A D=A E$
The total surface area of the pyramid is $360 \mathrm{~cm}^{2}$
Work out the size of the angle between $A C$ and the base $B C D E$.
Give your answer correct to 3 significant figures.

Question 7a

Alvin has a crate in the shape of a cuboid.
The crate is open at the top.
The internal dimensions of the crate are 46 cm long by 46 cm wide by 55 cm high.

Alvin has a stick of length 95 cm .
Alvin places the stick in the crate so that the shortest possible length extends out above the top of the crate.
Calculate the length of the stick that extends out of the crate.
cm
[4 marks]

Question 7b

Calculate the angle the stick makes with the base of the crate.

Question 8

The diagram shows a pyramid with a square base $A B C D$ of side length 8 cm .
The diagonals of the square, $A C$ and $B D$, intersect at M.
V is vertically above M and $V M=10 \mathrm{~cm}$.
Calculate the angle between VA and the base.

Question 9

NOT TO
SCALE

The diagram shows a prism with a rectangular base, ABFE.
The cross-section, $A B C D$, is a trapezium with $A D=B C$.
$A B=8 \mathrm{~cm}, G H=5 \mathrm{~cm}, B F=12 \mathrm{~cm}$ and angle $A B C=70^{\circ}$.
The perpendicular from G onto $E F$ meets $E F$ at X.
i)

Show that $E X=6.5 \mathrm{~cm}$.
ii)

Calculate $A X$.

$$
A X=
$$

iii)

Calculate the angle between the diagonal AG and the base ABFE.

Question 10

NOT TO
SCALE
$A B C D E F G H$ is a cuboid.
$A B=8 \mathrm{~cm}, B C=5 \mathrm{~cm}$ and $C G=11 \mathrm{~cm}$.
Ivana has a pencil of length 13 cm .
Does this pencil fit completely inside the cuboid? Show how you decide.

Question 11

NOT TO
SCALE

The diagram shows a pyramid with a square base $A B C D$.
$D B=8 \mathrm{~cm}$.
P is vertically above the centre, X, of the base and $P X=5 \mathrm{~cm}$.

Calculate the angle between $P B$ and the base $A B C D$.

